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Abstract: Discrete Wavelet Transform (DWT) de-noising method is widely used for one-dimension partial discharge (PD) signals 

measured from medium voltage underground cable. However, DWT de-noising has several drawbacks that prevent the DWT de-noising 

from improving its de-noising effectiveness In DWT de-noising, the two most important parameters are decomposition level and mother 

wavelet. The aforementioned parameters must be varied according to the noise level in the measured PD signal in order to effectively 

suppress the noise of the measured PD signal. In this paper, an adaptive DWT de-noising algorithm based on the Absolute Difference 

Optimizing (ADO) technique is presented to effectively suppress the varying noise levels in measured PD signal.  First, the measured PD 

signal will be de-noised using a Daubechies 3 (db3) mother wavelet and a DWT decomposition level ranging from 1 to 10. Second, the de-

noised PD signal will be subjected to the ADO technique. The sum of the absolute difference of local maxima in the de-noised PD signal 

will be used as an indicator to select the best decomposition level for the de-noised PD signal. Finally, the best-selected de-noised PD 

signal by using the ADO technique will be used to estimate the PD location on the underground cable. The results of PD location error 

using the ADO technique and normal DWT de-noising will be compared. The findings show that the ADO-based adaptive DWT de-noising 

algorithm significantly improved the de-noising process of the measured PD signal. 
.  
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1. Introduction 

Partial discharge (PD) in underground cables is a localized 

short-duration electrical pulse caused by an accumulation of 

electrical stress in the insulation system or on the insulation's 

surface [1]. Early detection of insulation defects is critical 

because PD can cause damage to underground cables. 

Extensive research on the phenomenon of PD that has been 

carried out includes feature extraction techniques [2-5], 

defect location and identification techniques [6,7], physical 

and chemical processes [8,9], denoising techniques [10-15], 

and pulse classification techniques [16-19]. 

 

There are numerous types of PD measurements available 

in the market, including optical, acoustic, electrical, and 

chemical byproduct analysis [20-24]. PD sensors such as 

High-Frequency Current Transformer (HCFT) and Ultra 

High Frequency (UHF), detect not only high-frequency 

signals starting at Mega Hertz (MHz) but also unwanted 

signals such as noise. The presence of noise and interference 

reduces measurement sensitivity especially when low-energy 

online PD pulses are present. Another drawback of online PD 

measurement occurs when the test detects multiple pulse 

signal sources.  

PD denoising is a salient task in online PD monitoring 

systems. To accurately de-noise PD signals, advanced 

methods such as Artificial Neural Networks (ANN) [13,14] 

and deep learning [25,26] are required. Wavelet transform-

based methods for PD denoising white noise have been 

reported in several studies [27-29]. The wavelet transform 

signal, on the other hand, is closely related to the selected 

mother wavelet and the level of decomposition [30]. 
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The standard DWT de-noising technique for a one-

dimension PD signal must set a fixed decomposition level to 

suppress the noise detected by the PD sensor. However, due 

to differences in environmental noise levels, the noise 

detected by the sensor is not effectively suppressed by 

standard DWT denoising techniques. Thus, an adaptive 

DWT De-noising Algorithm that implements the Absolute 

Difference Optimization (ADO) technique is introduced in 

this paper to automatically select the best decomposition 

level to suppress the noise without eliminating its PD signal. 

2. Adaptive Wavelet De-noising 

.  In this research work, the adaptive wavelet de-noising 

algorithm will be divided into three phases: modeling of the 

input signal, development of a new method of adaptive 

wavelet de-noising using the ADO technique, and finally 

application of the PD location algorithm to validate the 

effectiveness of de-noising by comparing the error of 

estimated PD location. The method of input signal modeling, 

which includes PD signal modeling and noise modeling will 

be explained in sub-section 2.1. The method of the ADO 

technique in selecting the decomposition level of DWT de-

noising will be explained in sub-section 2.2. Finally, the PD 

location algorithm used in estimating PD location will be 

explained in sub-section 2.3. 

 

2.1. PD Signal and Environmental Noise Modeling 

In the MATLAB environment simulation, the PD pulse 

mathematical model and PD propagation velocity along the 

underground cable must be determined. A mathematical 

model, as shown in Equation 1 [31], can be used to simulate 

the onsite measured PD signal from a PD sensor. 

 

𝑠(𝑡) = 𝐴[𝑒−𝑎1𝑡 cos(𝑤𝑑𝑡 − 𝜑) − 𝑒−𝑎2𝑡 cos(𝜑)]                 (1) 

 

where 𝐴  is the magnitude coefficient assumed to be 0.01, 

𝑎1 = 1 Ms−1 , 𝑎2 = 10 Ms−1 , 𝜑 = tan−1(
𝑤𝑑

𝑎2
⁄ ) , 𝑤𝑑 =

2𝜋𝑓𝑑, and 𝑓𝑑 = 1 MHz. The simulative sampling frequency,  

𝑓𝑠 is 100 MHz.  

 

In addition, the propagation velocity of the three cores 

50 𝑚𝑚2 𝐶𝑢 𝑋𝐿𝑃𝐸 𝑃𝑉𝐶, 8.7 15 𝑘𝑉⁄⁄⁄  underground cable is  

156 𝑚 𝜇𝑠⁄  as reported in [32]. The time delay in simulating 

the PD signal will be computed using the propagation 

velocity of the PD signal travelling along the cable.  

Furthermore, using the MATLAB function "awgn," 5 levels 

of white Gaussian noise (WGN) will be added to the 

simulated PD signal. The WGN noise level will be 

decremented in 5 dB steps from 5 dB to -20 dB signal to noise 

ratio (SNR). The results of the simulated PD signal with 

WGN are shown in sub-section 3.1.  

2.2. Absolute Difference Optimization Technique 

The adaptive wavelet de-noising algorithm will use the 

modeled PD signals along with varying levels of WGN. The 

adaptive wavelet de-noising algorithm's entire process flow 

is depicted in Figure 1. The algorithm begins by 

incorporating modeled PD signals with varying noise levels. 

Next, each of the noise-affected modeled PD signals will be 

de-noised using DWT with a fixed "Daubechies 3" (db3) 

mother wavelet and varying decomposition levels. The DWT 

de-noising decomposition levels are varied from 1 to 10 with 

a 1-level step increment. The de-noised PD signals will then 

be absolute as a pre-processing step before applying the 

ADO technique. The ADO technique is composed of two 

steps: computing the absolute difference (AD) of de-noised 

PD signals using the MATLAB function "findpeaks" and 

computing the ADO factor using Equation 2.  

 

𝐴𝐷𝑂 = ∑ 𝐴𝐷 − 𝐾                                                              (2) 

 

where, ∑ 𝐴𝐷 is the summation of total local maxima in the 

PD signal and 𝐾 is the constant optimization value for DWT 

de-noising by using db3 mother wavelet. 

The lower the value of the ADO factor, the more efficient 

the PD signal de-noising process. The ADO technique can 

thus determine the best decomposition level of DWT de-

noising for each noise level. Finally, the best de-noised PD 

signals will be chosen and used to estimate PD location on 

underground cables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of adaptive wavelet de-noising 

2.3. Estimated PD Location 

The simulation model of on-line PD location estimation 

system for underground ground cable in this research is 
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based on double-end PD location algorithm. Figure 2 shows 

an online PD location estimation system for underground 

cables. In this model, double-end PD location measuring 

method will be used. Two PD sensors, PD sensor A and PD 

sensor B, are clamped at the underground cable's front and 

tail ends. The PD sensors are spaced 2 kilometers apart. PD 

occurs at 1.3 km from the front end of the underground cable. 

The measured PD signals from PD sensors A and B will be 

sent to the substation control panel for PD location 

estimation using the PD location algorithm. The PD location 

algorithm will be fed the best de-noised PD signal from 

adaptive wavelet de-noising. 

 

 

 

 

 

 

 

 

 

 
Figure 2. Online PD location estimation system for underground cables 

 The cross-correlation technique will be used to find the 

strongest bonding between the two de-noised PD signals 

from PD sensor A and PD sensor B. The cross-correlation 

factor mathematical equation is as follows: 

 

𝐶𝐶𝐹𝐴𝐵 = ∑ 𝐴[𝑛]10000
𝑛=0 × 𝐵[𝑛]                                            (3) 

 

where, 𝐴[𝑛] is the de-noised PD signal from PD sensor A 

and 𝐵[𝑛] is the de-noised PD signal from PD sensor B. 

According to Equation (3), the cross-correlation factor for 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛]  and 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛]  (𝐶𝐶𝐹𝐴𝐵)  is computed by 

shifting 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛]  by one sample to the right, then 

multiplying 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛]  with 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛] , and finally 

summing the product of 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛] and 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛]. This 

process of shifting, multiplying and summing is repeated ten 

thousand times until the adjacent signal is shifted one full 

cycle. The 𝐶𝐶𝐹𝐴𝐵 will be converted into time different, 𝑇𝐴𝐵 

and the estimated PD location can be obtained using 

Equation (4). 

 

𝑃𝐷 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0.5(𝐿 − 𝑣 ∗ 𝑇𝐴𝐵)                                      (4) 

 

where, 𝐿  is the total monitored cable length, 𝑣  is the 

propagation velocity of PD signal along the cable, and 𝑇𝐴𝐵  is 

the time different between 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛] and 𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛] 

3. Result and Discussion 

The results of the adaptive wavelet de-noising algorithm 

can be divided into three sections. Sub-section 3.1 shows the 

results of the simulated PD signal and DWT de-noising, sub-

section 3.2 shows the results and analysis of DWT de-noising 

performance by using ADO technique, and sub-section 3.3 

shows the effect of ADO technique on reducing the 

percentage error of the estimated PD location.  

 

3.1. Simulated PD Signal and Wavelet De-noising  

In sub-section 2.3, the simulation model of an online PD 

location estimation system for underground cable will 

generate two measuring PD signals from PD Sensor A and 

PD Sensor B. Equation 1 is used to calculate the generated 

PD signals, which consider the PD signal propagation 

velocity in the underground cable. Figure 3 (a) and Figure 3 

(b) show simulated 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛]  from PD Sensor A and 

simulated  𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛] from PD Sensor B with minimum 

noise of 5 dB SNR. Figure 4 (a) and Figure 4 (b) depict 

simulated 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛]  from PD Sensor A and simulated  

𝑆𝑖𝑔𝑛𝑎𝑙 𝐵[𝑛] from PD Sensor B with maximum noise of -20 

dB SNR. When comparing Figures 3 and 4, the PD pulse in 

Figure 3 can still be seen, whereas the PD pulse in Figure 4 

is submerged in the WGN. As a result, before incorporating 

the PD location algorithm, the measured PD signal must be 

de-noised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. (a) Signal A with SNR=5 dB; (b) Signal B with SNR=5 dB  

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) Signal A with SNR=-20 dB; (b) Signal B with SNR=-20 dB  
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In this paper, DWT de-noising with decomposition levels 

ranging from 1 to 10 is applied to a simulated PD signal with 

SNR ranging from 5 to -20dB.  Figure 5 shows the results of 

DWT de-nosing on simulated 𝑆𝑖𝑔𝑛𝑎𝑙 𝐴[𝑛] with -20 dB SNR 

using decomposition levels 1, 5, and 10. The DWT de-

noising with decomposition level 1 is insufficient, according 

to the comparison of decomposition levels in sub-figures 5(a), 

5(b), and 5(c), because the de-noised signal still contains a 

significant amount of noise. Meanwhile, the DWT de-

noising with decomposition level 10 outperforms because the 

PD pulse has been eliminated from the de-noised signal. The 

DWT de-noising with decomposition level 5 performs the 

best of the three de-noised signals because it remains the PD 

pulse while suppressing a large amount of noise.  Thus, 

selecting the appropriate decomposition level for a specific 

noise level is critical for effective PD signal de-noising. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5. (a) De-noised signal with decomposition level 1; (b) De-noised 

signal with decomposition level 5; (c) De-noised signal with 

decomposition level 10 

3.2. Adaptive Wavelet De-noising with ADO technique 

ADO is a novel method for determining the best 

decomposition level for DWT de-noising in relation to the 

noise level. Table 1 displays the results of DWT de-noising 

on PD signals with an SNR of 5dB. With the condition that 

db3 is used as the mother wavelet, the lowest ADO factor 

indicates the best decomposition level for DWT de-noising. 

As a result, decomposition level 1 is the best choice for DWT 

de-noising on PD signals with 5 dB SNR because the lowest 

ADO factor (0.0829) yields the lowest PD location error 

(0.0173%).  

 
 

 

 

 

Table 1. ADO factor for PD signal with 5 dB SNR 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the result of DWT de-noising on PD 

signals with -10 dB SNR. The decomposition level 3 is the 

most suitable decomposition level for DWT de-noising on 

PD signals with 5 dB SNR because the lowest ADO factor 

(0.0575) yields the lowest PD location error (0.0173 %). 

Table 3 shows the result of DWT de-noising on PD signals 

with an SNR of -20dB. The decomposition level 4 is the best 

decomposition level for DWT de-noising on PD signals with 

5 dB SNR because the lowest ADO factor (0.5591) yields the 

lowest PD location error (0.0173 %). Based on Table 1, Table 

2, and Table 3, the AD value closest to 0.4 shows the best 

decomposition level. Thus K=0.4 is selected as the constant 

optimization value for DWT de-noising by using the db3 

mother wavelet in Equation 2. 

 
Table 2. ADO factor for PD signal with -10 dB SNR 

 

 

 

 

 

 

 

Table 3. ADO factor for PD signal with -20 dB SNR 
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Table 4 displays the best decomposition level of DWT de-

noising in terms of the lowest ADO factor for a noise-

corrupted signal with SNR ranging from 5 dB to -20 dB and 

a 5dB step decrement. According to Table 4, the higher the 

noise level or the lower the SNR, the higher the 

decomposition level for DWT de-noising is required to 

efficiently suppress the noise without eliminating the PD 

pulse. The graph in Figure 6 depicts the estimated PD 

location error versus decomposition level. According to the 

graph in Figure 6, any decomposition level higher than level 

6 will result in inefficient DWT de-noising, resulting in a 

high estimated PD location error. Decomposition levels 1, 2, 

and 3 will also result in inefficient DWT de-noising for 

signals with -20 dB SNR. 

.  

Table 4. The best decomposition level of DWT de-noising for various 

noise level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graph of estimated PD location error versus decomposition level 

4. Conclusion 

The adaptive wavelet de-noising algorithm based on the 

ADO technique has been shown to improve the performance 

of DWT by automatically selecting the best decomposition 

level based on the noise in the PD signal. The findings show 

that the higher the noise level in PD signal, the higher the 

decomposition level required for effective DWT de-noising. 

The adaptive wavelet de-noising algorithm can be improved 

in the future by automating the selection of the mother 

wavelet for DWT de-noising.  
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