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Abstract: Pollen classification is a critical task with applications spanning diverse fields such as botany, geology, ecology, 

and evolutionary biology. Existing identification methods suffer from labor-intensive processes, time constraints, and 

dependency on highly skilled experts. This research addresses the exigent need for an automated and precise pollen 

identification system through the introduction of a novel hybrid approach. The proposed hybrid model combines advanced 

image processing techniques with deep learning methodologies to achieve accurate and efficient pollen recognition. Initial 

noise reduction is accomplished through the application of a Wiener filter, followed by the utilization of pixel properties for 

image reflection removal. Subsequently, the Scale Invariant Features Transform (SIFT) is employed for robust feature 

extraction. The final stage involves the application of a Convolutional Neural Network (CNN) for pollen classification. 

Experimental results demonstrate the superiority of the hybrid model, exhibiting significantly higher accuracy and 

classification performance. The precision value of 0.9937, recall of 0.9918, F1-Score of 0.9999, and an overall accuracy of 

99.91% underscore the efficacy of the proposed approach. This innovative integration of image processing and deep learning 

not only addresses the shortcomings of existing methods but also sets a new standard for precise and automated pollen 

classification, offering invaluable contributions to various scientific disciplines. This research holds promising potential to 

revolutionize the field by providing a scalable and efficient solution to the longstanding challenges associated with pollen 

identification. 
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1. Introduction 

Identifying and classifying pollen is crucial across various 

fields like ecology, agriculture, paleoecology, 

paleoclimatology, environment, archaeology, medicine, 

botany, and forensics [1], [2]. However, traditional methods 

for pollen analysis pose significant challenges due to their 

labor-intensive nature and the high level of expertise needed 

for accurate classification. These conventional techniques, 

heavily reliant on microscopy, involve meticulous processes 

and are prone to human error, highlighting the necessity for 

more efficient and reliable methods [3], [4].  

Automating identification using Deep Learning (DL) 

algorithms provides several benefits. These include reducing 

the time and effort required for analysis, increasing the 

accuracy and consistency of results, and enabling large-scale 

analysis of pollen samples. This process can bring new 

insights and discoveries in many fields [5], [6]. 

In recent years, deep learning has been widely used to 

increase efficiency and accuracy, reduce human effort and 

reduce errors [7]. Among various deep learning (DL) 

techniques, convolutional neural networks (CNN) have 

become popular in the last few years. They are known for 

their performance in tasks such as image classification, 

object detection, and task recognition. This is attributed to 

powerful neural network architectures that can 

autonomously extract mid- to high-level features from image 
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datasets and make them more interesting [8[–[10]. 

However, CNNs inherently possess limitations, 

particularly in capturing fine-grained textural details crucial 

for distinguishing visually similar pollen. Pollen displays 

intricate surface textures and patterns that vary significantly 

between species, making texture analysis essential for 

accurate classification. Moreover, CNNs often demand 

substantial amounts of labeled data for effective training, a 

challenge due to the labor-intensive nature of data annotation 

in pollen classification [11], [12]. To overcome these 

limitations, this study employs a hybrid method that 

integrates image processing techniques with Convolutional 

Neural Network (CNN) technology. The application of the 

Wiener filter is pivotal in mitigating noise, providing a 

cleaner foundation for subsequent analyses. Utilizing pixel 

properties for image enhancement further refines the visual 

characteristics of pollen samples, contributing to more 

accurate feature extraction. SIFT plays a crucial role in 

capturing distinctive features of pollen, particularly their 

complex surface textures. 

While CNNs excel in recognizing overall patterns, they 

may struggle with fine-grained details essential for 

distinguishing visually similar pollen. The hybrid model 

leverages the strengths of each component, combining the 

precision of traditional image processing techniques with the 

ability of CNNs to recognize complex patterns. This synergy 

enhances the overall accuracy and efficiency of pollen 

classification in diverse and challenging scenarios. Notably, 

this integration also reduces the amount of data required for 

CNN training, enabling more efficient model training and 

classification [13], [14]. This combined approach capitalizes 

on the strengths of both techniques, improving feature 

extraction and yielding more robust and accurate results in 

pollen classification. 

The paper is organized as follows: the first chapter 

presents the introduction, followed by a detailed discussion 

of existing literature in Chapter Two. Methodology is 

comprehensively described in Chapter Three, and the results 

and discussions are expounded upon in Chapter Four. 

2. Literature Review 

Traditionally, pollen analysis has relied on manual 

microscopy, a labor-intensive process demanding skilled 

experts [15]–[17]. This technique involves both bright field 

and dark field microscopy, and can incorporate various 

pollen preparation approaches like staining fresh pollen or 

acetolysis [18], the latter being applicable to fossil pollen as 

well [12]. While manual microscopy remains the favored 

choice for certain applications, ongoing technological 

advancements are introducing alternative methods. These 

include molecular techniques like meta-barcoding [19] or 

genome skimming [20], chemotaxonomy [21], and image 

analysis methods utilizing deep neural networks [21], [22]. 

For pollen analysis methods to be valuable, they must 

possess qualities of accuracy, quantifiability, efficiency [23], 

[24], and ideally, be accessible to a broad user base. The 

accuracy, primarily gauged by correct identification, is 

generally presumed to be high in manual analysis [23]. 

Nevertheless, some studies indicate lower accuracy levels in 

human assessments [25], and despite their quantitative 

nature [26], manual methods are relatively inefficient. A 

common challenge is the trade-off between the number of 

samples and the quantity of analyzed pollen grains per 

sample, leading to increased uncertainty in quantitative 

estimates [16], [26]. While there is a claim that 

meta-barcoding can facilitate quantitative assessments [19], 

this perspective has faced opposition [27]. 

Image analysis methods employing neural network or 

machine learning classification techniques hold the 

potential to achieve accuracy, quantifiability, efficiency, 

and accessibility. A recent review by Holt and Bennett [23] 

highlights the potential and requirements of using hybrid 

methods. Many new studies have since been published [12, 

28, 29], indicating substantial advancements in the field of 

image processing and deep neural network. Notably, deep 

neural networks, particularly convolutional neural networks 

(CNN), have demonstrated high efficiency in classifying 

two-dimensional images [30]–[33].  

Recent studies have demonstrated remarkable accuracies, 

approaching nearly 100% [12], [29], [34]. Even when faced 

with a challenging task involving 46 pollen types. Sevillano 

et al. [28] demonstrated an impressive correct classification 

rate of nearly 98%. This achievement is particularly 

noteworthy considering that some of the included pollen 

types are traditionally difficult to distinguish, even for 

experienced palynologists. 

The results from a convolutional neural network (CNN) 

classification are not only accurate but also quantitative. 

With contemporary computing capabilities, the 

classification process is highly efficient, with the ability to 

classify a hundred or more objects per second [29]. 

Additionally, most of the software used in these studies is 

built on open-source code, allowing for the potential 

development of open systems. Significantly, successful 

studies were employed hybrid methods, combining CNN 

with feature extraction [28], [29]. 

This study, we employed a hybrid method to achieve 

precise pollen classification. The comprehensive 

methodology underpinning the study is expounded upon in 

the subsequent chapters. These chapters provide an in-depth 

exploration of the intricacies involved in our approach, 

offering a detailed roadmap for understanding the hybrid 

method's application and significance in the context of 

accurate pollen classification.  

3. Materials and Methods 

The methodology comprises four distinct stages. Firstly, 

noise reduction is applied to pollen images, followed by 

reflection removal. The subsequent stage involves feature 

extraction, and the final step entails pollen classification 



Md Aman et al., / Journal of Engineering and Science Research, 7(6) 2023, Pages: 01-10 
 

 

3 

utilizing Convolutional Neural Networks (CNN). The 

holistic flow of the methodology is visually depicted in 

Figure 1, providing a clear and concise overview of the 

sequential processes involved in our approach. 

3.1. Dataset 

This study utilized datasets, namely the Malaysian Pollen 

Dataset (MPD) to assess the efficiency and accuracy of the 

proposed model in classifying pollen grains across diverse 

geographical and botanical contexts. The MPD was 

collected from various locations in Terengganu, a state in 

Malaysia. The analysis involved 40 classes of MPD, each 

comprising more than 350 images, including augmented 

images. Figure 2 visually represents the Malaysian Pollen 

Datasets, offering a comprehensive overview of the dataset 

used in this study. In Figure 3, we present the distribution of 

images within the Malaysian Pollen Dataset, providing 

insights into the composition and variety encapsulated in 

our dataset.  

 

 

 

 

 

 

 

Figure 1. Overall research methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Malaysian pollen datasets 

 

3.2. Noise removal using Wiener Filter 

Pre-processing encompasses a set of techniques and 

operations applied to an input image before undertaking the 

actual analysis or manipulation of the image's content [35], 

[36]. The primary goal of pre-processing is to enhance the 

image's quality, render it more suitable for a specific task, 

or eliminate unwanted artifacts or noise, playing a crucial 

role in object classification. Hence, pre-processing proves 

essential for elevating the quality of pollen images within 

the collected dataset. Figure 4 illustrates the methodology 

flow employed for noise reduction. 

In this study, the Wiener filter was utilized to reduce 

noisy pollen images, especially deblur. The Wiener filter, 

functioning as a deconvolution technique, reduces image 

blurriness by estimating and reversing the effects of blur in 

the frequency domain [37], [38]. This method proves 

effective when a reliable estimate of the point spread 

function (PSF) and noise characteristics are available. 

Nevertheless, its applicability may be limited in real-world 

scenarios featuring complex or unknown blur and noise 

patterns. Consequently, this research will adapt the existing 

algorithm to determine appropriate parameters for unknown 

blur, estimated PSF, and noise patterns. Striking the right 

balance between reducing blur and avoiding noise 

amplification in the process remains crucial. Figure 5 

provides an example of a pre-processed image using the 

Wiener filter. 

Firstly, we estimate how light from a point source 

spreads across the image to arrive at the Point Spread 

Function (PSF). A comparison between the noisy pollen 

image and this predicted PSF is made possible.   

The estimated point spread function (PSF) and the noisy 

image are transformed from the time domain to the 

frequency domain using the Fast Fourier Transform (FFT). 

When the noise power is measured across many frequencies, 

the Power Spectral Density (PSD) can be calculated. 

Estimates are made on the noise's characteristics, such as its 

statistical distribution and its additive noise. 
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The noisy pollen image is deblurred using the 

widely-respected Wiener filter. This filter works by 

decreasing the volume of low-frequency sounds while 

increasing the volume of high-frequency sounds. In the 

frequency domain, the Wiener filter is realized by 

performing point-wise multiplication.  The formula for the 

Wiener filter, denoted as H(w) is defined in Equation (1). 

 

 

(1) 

 

where G(w) is the FT of pollen image, and N(w) is the 

calculated NPS. 

Finally, the inverse Fourier Transform is applied to the 

product of the filter employment in the spatial domain. This 

comprehensive approach significantly enhances the quality 

of the noisy pollen image in the dataset, effectively 

reducing the blur effect and bringing out the distinct 

features within the images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of Malaysian Pollen Dataset Images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flowchart for noise reduction using wiener filter. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 5. Noise reduction using Wiener filter (a) Original 

image (b) Image after processing 

3.3. Reflection removal 

The method utilizes average thresholding (Equation 2) to 

provide a binary mask that effectively differentiates 

desirable pollen from background noise. By utilizing the 

attributes of pixels, essential characteristics such as the size 

and placement of components are quantified. This allows 

for the strategic identification of the most significant 

connected component, reducing potential noise's impact. 

 

(2) 

 

 

Where n is the number of pollen images, and Ai is the 

grayscale value of the respective pollen region. 

 

The process of morphological close is employed to 

enhance pollen morphology, while a flood-fill operation is 

utilized to diminish reflections, resulting in the meticulous 

removal of undesired deformities. Figure illustrated the 

overall methodologies for reflection removal employed for 

this study. Figure 6 illustrates the methodology flow applied 

for reflection removal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Flowchart for reflection removal using pixel 

properties. 
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3.4. Feature Extraction 

Lowe [39] introduced a technique for extracting features 

called SIFT (Scale Invariant Features Transform). We have 

utilized SIFT for feature extraction. SIFT features are 

computed through a four-step process. Initially, key points 

that are crucial and stable for given images are identified in 

the local context. Following this, features are extracted from 

each critical point, elucidating the pollen image region 

samples in connection to its scale space coordinate image. 

In the second step, weak features are filtered out using a 

specific threshold value. The third step involves assigning 

orientations to each key point based on local image gradient 

directions. Ultimately, the feature vector is extracted, and 

bi-linear interpolation is applied to enhance the robustness 

of features. 

 

 

 

 

 

 

 

Figure 7. Flowchart for feature extraction using SIFT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Example of feature selection using SIFT. 

 

In Figure 8, the colorful circles depict key points detected 

by the SIFT algorithm, with the size of each circle 

corresponding to the scale of the detected feature. These 

key points are the distinctive features the algorithm has 

identified as invariant to scaling and rotation and partially 

invariant to changes in illumination and 3D camera 

viewpoint. These features will be used for classification 

using CNN. 

3.5. Pollen classification 

Convolutional Neural Networks (ConvNets or CNNs) 

were initially introduced in the 1990s, as demonstrated by 

LeCun et al. in 1998 [40]. However, they gained widespread 

popularity and recognition following the pivotal victory of 

AlexNet in the 2012 ImageNet competition, as reported by 

Krizhevsky et al. [41]. Since then, numerous modifications 

and variations of ConvNets have been developed, although 

the majority of these modifications have not been 

extensively applied to the classification of scattered images 

of airborne particles of biological origin. 

In the proposed CNN Architecture, the extracted SIFT 

features serve as the input for the CNN model, which 

comprises multiple layers designed for the hierarchical 

extraction of high-level features from the input images. The 

network is trained using a portion of the labeled dataset, and 

performance is validated through cross-validation techniques. 

It is built to handle grayscale images with a default size of 

48x48 pixels. Starting with the input layer, the architecture 

comprises a convolutional layer with six filters, each of size 

5×5, and employs the 'same' padding, promising the output 

spatial dimensions to stay identical after convolution. 

Following this, a MaxPooling layer with a 2×2 pool size is 

employed, effectively reducing the spatial dimensions by 

half. 

The remaining layers continue the same pattern. The 

model incorporates another convolution layer with 16 filters 

of size 5×5, including a MaxPooling operation. Following 

this is a third convolutional layer equipped with 64 filters of 

size 3×3, accompanied by an additional MaxPooling layer. 

After the convolutional procedures, the architecture flattens 

the 3D tensor to a 1D vector, which then goes via a fully 

connected layer containing 128 neurons and a Rectified 

Linear Unit (ReLU) activation function. To avoid overfitting, 

the model introduces a Dropout layer, which randomly sets 

50% of its input data units to 0 during training. The last layer 

is a dense layer with 32 neurons and a softmax activation, 

demonstrating the model's objective to categorize input 

images into one of 32 and 40 possible classes for both 

datasets. The model working procedure is portrayed in 

Algorithm 1, shown in Table 1.  Figure 9 represents the 

architecture employed on the pollen dataset. 
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Figure 9. CNN architecture 

 

 

Table 1. CNN algorithm used for this study 

 

Algorithm 1: Pollen Image Classification Using CNN 

1: Procedure CreatePollenModel (input_shape) 

2:      if input_shape is None, then 

3:          input_shape  (48, 48, 1) 

4:     end if  

5:     Initialize the model as Sequential () 

6:     Add Input layer of shape = input_shape  
Convolutional Blocks 

7:     for filters, kernel_size in [(6, (5,5)), (16, (5,5)), (64, 
(3,3))] do 

8:          model.add (Conv2D (filters, kernel_size, 

activation = ‘ReLU’)) 

9:          model.add (MaxPool2D(2, 2)) 

10:    end for 

11:    Flatten the output 

12:    model.add(Dense(128, activation='ReLU')) 

13:    model.add(Dropout(0.5)) 

14:    model.add(Dense(40, activation='softmax'))  
Dataset 1 

15:    return model 

16: end procedure 

 

4. Result and Discussion  

Performance evaluation of the proposed method is 

evaluated by precision in Equation (3), recall in Equation (4), 

and F1-score in Equation (5). TP denotes true positives, TN 

signifies true negatives, FP represents false positives, and FN 

stands for false negatives. High precision and recall values 

indicate strong performance in mitigating false positives and 

false negatives within a model [28]. 

 

(3) 

 

(4) 

 

(5) 

 

 

The F1 score offers a comprehensive assessment by 

combining precision and recall. A high F1 score indicates 

that the model retrieved both low false positives and false 

negatives, demonstrating the consistency of these measures 

and the model's reliability. Precision, recall, and F1 scores 

were computed as the weighted average based on the 

number of actual instances for each class in our experiments. 

Additionally, we calculated the accuracy of the 

classification model by dividing the number of accurate 

predictions by the total number of samples. The 

effectiveness of the proposed CNN compared with other 

machine learning methods, including RF, SVM, AlexNet, 

MLP, and ViT. 

Different pollen image classification methods are 

evaluated by their performance indicators, summarized in 

Table 2. Random Forest (RF) demonstrates robust 

performance with a precision of 0.9415 and recall of 0.9735, 

demonstrating accurate identification of positive cases and 

coverage of genuine positives. While the Support Vector 

Machine (SVM) has a somewhat lower precision of 0.8831, 

its recall of 0.9364 and F1-Score of 0.9926 are also 

remarkable, demonstrating its ability to record positive 

events in their entirety. AlexNet's precision is 0.99.21, but 

its recall is only 0.9452. The Vision Transformer (ViT) 

shows a balanced performance, with a high F1-Score of 

0.9912 thanks to its precision of 0.9413 and recall of 0.9792. 

The Multi-Layer Perceptron (MLP) achieves respectable 
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results, with a 0.9722 precision, a 0.9842 recall, and a 

0.9725 F1-Score. 

The Proposed Model emerges as the most promising 

alternative, with superior precision (0.9937), recall (0.9918), 

and F1-Score (0.9999) compared to all other models. This 

model's comprehensive and high-performing approach to 

pollen image classification is demonstrated by its greater 

capacity to produce accurate optimistic predictions while 

thoroughly capturing the actual positive instances. The 

extraordinary F1-Score of the proposed model demonstrates 

its remarkable equilibrium between precision and recall, 

making it an appealing option for this specific task. 

Furthermore, the accuracy of different models is shown in 

Figure 10. 

 

Table 2. Comparative analysis of different methods with the proposed algorithm 

Algorithms Precision Recall F1-Score 

RF 0.9415 0.9735 0.9811 

SVM 0.8831 0.9364 0.9926 

AlexNet 0.9921 0.9452 0.9452 

ViT 0.9413 0.9792 0.9912 

MLP 0.9722 0.9842 0.9725 

Proposed 

model 

0.9937 0.9918 0.9999 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Accuracy comparison of the proposed model with other methods. 

 

Confusion matrix for Dataset MPD (Figure 11) 

illustrating the accuracy of classifications across different 

categories. Heatmap of classification results for Dataset 

MPD. Darker squares denote higher frequencies of correct 

predictions. Dataset MPD's confusion matrix, the diagonal 

line shows the number of correct predictions, while 

off-diagonal elements indicate misclassifications. Number 

0-39 is the index of pollen classes; refer to Figure 2 to see 

a sample image of each pollen class. The vertical axis 

represents truth values, and the horizontal axis represents 

predicted value. Figure 12 shows the results of pollen 

classification using the proposed method.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Confusion Matrix with Malaysian Pollen Dataset 
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Figure 12: Confusion Matrix with Malaysian Pollen Dataset 

 

5. Conclusion 

In conclusion, this research endeavors to address the 

pressing need for an automated and precise pollen 

classification system crucial in various scientific disciplines. 

Leveraging a novel hybrid approach that integrates image 

processing and deep learning, our proposed model 

demonstrates significant accuracy and classification 

performance advancements. 

The meticulous application of a Wiener filter for noise 

reduction, pixel properties for reflection removal, and the 

Scale Invariant Features Transform (SIFT) for robust 

feature extraction lays the foundation for the subsequent 

success of the Convolutional Neural Network (CNN) in 

pollen classification. The achieved precision value of 

0.9937, recall of 0.9918, F1-Score of 0.9999, and overall 

accuracy of 99.91% underscore the superiority of our 

hybrid model compared to traditional methods. 

Future research directions should focus on enhancing the 

proposed hybrid model by incorporating advanced 

techniques and expanding the dataset to encompass a 

broader range of pollen types. Additionally, exploring 

real-world applications, transfer learning, and 

interdisciplinary collaboration can contribute to refining the 

model for practical deployment in various fields. 
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